Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308081

RESUMO

The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


Assuntos
Hidrolases de Éster Carboxílico/genética , Dioxigenases/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium abscessus/genética , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Células A549 , Animais , Antibiose/genética , Caenorhabditis elegans/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Dioxigenases/metabolismo , Dioxigenases/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mycobacterium abscessus/enzimologia , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/genética , Piocianina/metabolismo , Quinolonas/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
ACS Chem Biol ; 12(9): 2305-2312, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708374

RESUMO

2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(ß-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.


Assuntos
Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Hidroxiquinolinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Bactérias/química , Toxinas Bacterianas/química , Biotransformação , Humanos , Hidroxiquinolinas/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química
3.
Front Microbiol ; 8: 339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303132

RESUMO

Pseudomonas aeruginosa employs 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone (HHQ) as quorum sensing signal molecules, which contribute to a sophisticated regulatory network controlling the production of virulence factors and antimicrobials. We demonstrate that Mycobacterium abscessusT and clinical M. abscessus isolates are capable of degrading these alkylquinolone signals. Genome sequences of 50 clinical M. abscessus isolates indicated the presence of aqdRABC genes, contributing to fast degradation of HHQ and PQS, in M. abscessus subsp. abscessus strains, but not in M. abscessus subsp. bolletii and M. abscessus subsp. massiliense isolates. A subset of 18 M. a. subsp. abscessus isolates contained the same five single nucleotide polymorphisms (SNPs) compared to the aqd region of the type strain. Interestingly, representatives of these isolates showed faster PQS degradation kinetics than the M. abscessus type strain. One of the SNPs is located in the predicted promoter region of the aqdR gene encoding a putative transcriptional regulator, and two others lead to a variant of the AqdC protein termed AqdCII, which differs in two amino acids from AqdCI of the type strain. AqdC, the key enzyme of the degradation pathway, is a PQS dioxygenase catalyzing quinolone ring cleavage. While transcription of aqdR and aqdC is induced by PQS, transcript levels in a representative of the subset of 18 isolates were not significantly altered despite the detected SNP in the promoter region. However, purified recombinant AqdCII and AqdCI exhibit different kinetic properties, with approximate apparent Km values for PQS of 14 µM and 37 µM, and kcat values of 61 s-1 and 98 s-1, respectively, which may (at least in part) account for the observed differences in PQS degradation rates of the strains. In co-culture experiments of P. aeruginosa PAO1 and M. abscessus, strains harboring the aqd genes reduced the PQS levels, whereas mycobacteria lacking the aqd gene cluster even boosted PQS production. The results suggest that the presence and expression of the aqd genes in M. abscessus lead to a competitive advantage against P. aeruginosa.

4.
Appl Environ Microbiol ; 81(22): 7720-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319870

RESUMO

Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 µM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.


Assuntos
Pseudomonas aeruginosa/genética , Percepção de Quorum , Rhodococcus/genética , Fatores de Virulência/genética , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/genética , Glicolipídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Filogenia , Plasmídeos , Pseudomonas aeruginosa/metabolismo , Piocianina/genética , Piocianina/metabolismo , Quinolonas/metabolismo , Rhodococcus/metabolismo , Análise de Sequência de DNA , Fatores de Virulência/metabolismo
5.
J Biotechnol ; 211: 99-100, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26210289

RESUMO

Rhodococcus erythropolis BG43 was isolated from soil and characterized as a degrader of the quorum sensing signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone, produced by Pseudomonas aeruginosa. The complete genome of R. erythropolis BG43 consists of a circular chromosome and three plasmids, one of them circular and two linear ones. In total, 6158 protein-coding regions were identified. With this genome sequence, the genetic basis of its quorum-quenching ability and possible biotechnological applications can be explored further.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Rhodococcus/genética , Transdução de Sinais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala
6.
Environ Microbiol ; 17(11): 4352-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809238

RESUMO

In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.


Assuntos
Achromobacter denitrificans/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Metabolismo Secundário/fisiologia , Dados de Sequência Molecular , Oxirredução , Floresta Úmida , Transdução de Sinais , Solo/química , Microbiologia do Solo
7.
Appl Environ Microbiol ; 80(23): 7266-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239889

RESUMO

A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.


Assuntos
Quinolonas/metabolismo , Rhodococcus/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/genética , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Rhodococcus/classificação , Rhodococcus/genética , Rhodococcus/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...